This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all division rings (sometimes called skew fields). A division ring is a unital ring where every element except the additive identity has a multiplicative inverse. (Contributed by NM, 4-Apr-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-drngo | |- DivRingOps = { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdrng | |- DivRingOps |
|
| 1 | vg | |- g |
|
| 2 | vh | |- h |
|
| 3 | 1 | cv | |- g |
| 4 | 2 | cv | |- h |
| 5 | 3 4 | cop | |- <. g , h >. |
| 6 | crngo | |- RingOps |
|
| 7 | 5 6 | wcel | |- <. g , h >. e. RingOps |
| 8 | 3 | crn | |- ran g |
| 9 | cgi | |- GId |
|
| 10 | 3 9 | cfv | |- ( GId ` g ) |
| 11 | 10 | csn | |- { ( GId ` g ) } |
| 12 | 8 11 | cdif | |- ( ran g \ { ( GId ` g ) } ) |
| 13 | 12 12 | cxp | |- ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) |
| 14 | 4 13 | cres | |- ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) |
| 15 | cgr | |- GrpOp |
|
| 16 | 14 15 | wcel | |- ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp |
| 17 | 7 16 | wa | |- ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) |
| 18 | 17 1 2 | copab | |- { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } |
| 19 | 0 18 | wceq | |- DivRingOps = { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } |