This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the projection operator for a direct product. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dpj | ⊢ dProj = ( 𝑔 ∈ Grp , 𝑠 ∈ ( dom DProd “ { 𝑔 } ) ↦ ( 𝑖 ∈ dom 𝑠 ↦ ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdpj | ⊢ dProj | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cgrp | ⊢ Grp | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | cdprd | ⊢ DProd | |
| 5 | 4 | cdm | ⊢ dom DProd |
| 6 | 1 | cv | ⊢ 𝑔 |
| 7 | 6 | csn | ⊢ { 𝑔 } |
| 8 | 5 7 | cima | ⊢ ( dom DProd “ { 𝑔 } ) |
| 9 | vi | ⊢ 𝑖 | |
| 10 | 3 | cv | ⊢ 𝑠 |
| 11 | 10 | cdm | ⊢ dom 𝑠 |
| 12 | 9 | cv | ⊢ 𝑖 |
| 13 | 12 10 | cfv | ⊢ ( 𝑠 ‘ 𝑖 ) |
| 14 | cpj1 | ⊢ proj1 | |
| 15 | 6 14 | cfv | ⊢ ( proj1 ‘ 𝑔 ) |
| 16 | 12 | csn | ⊢ { 𝑖 } |
| 17 | 11 16 | cdif | ⊢ ( dom 𝑠 ∖ { 𝑖 } ) |
| 18 | 10 17 | cres | ⊢ ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) |
| 19 | 6 18 4 | co | ⊢ ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) |
| 20 | 13 19 15 | co | ⊢ ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) |
| 21 | 9 11 20 | cmpt | ⊢ ( 𝑖 ∈ dom 𝑠 ↦ ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) ) |
| 22 | 1 3 2 8 21 | cmpo | ⊢ ( 𝑔 ∈ Grp , 𝑠 ∈ ( dom DProd “ { 𝑔 } ) ↦ ( 𝑖 ∈ dom 𝑠 ↦ ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) ) ) |
| 23 | 0 22 | wceq | ⊢ dProj = ( 𝑔 ∈ Grp , 𝑠 ∈ ( dom DProd “ { 𝑔 } ) ↦ ( 𝑖 ∈ dom 𝑠 ↦ ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) ) ) |