This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Centralizers and centers
df-cntz
Metamath Proof Explorer
Description: Define thecentralizer of a subset of a magma, which is the set of
elements each of which commutes with each element of the given subset.
(Contributed by Stefan O'Rear , 5-Sep-2015)
Ref
Expression
Assertion
df-cntz
⊢ Cntz = m ∈ V ⟼ s ∈ 𝒫 Base m ⟼ x ∈ Base m | ∀ y ∈ s x + m y = y + m x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ccntz
class Cntz
1
vm
setvar m
2
cvv
class V
3
vs
setvar s
4
cbs
class Base
5
1
cv
setvar m
6
5 4
cfv
class Base m
7
6
cpw
class 𝒫 Base m
8
vx
setvar x
9
vy
setvar y
10
3
cv
setvar s
11
8
cv
setvar x
12
cplusg
class + 𝑔
13
5 12
cfv
class + m
14
9
cv
setvar y
15
11 14 13
co
class x + m y
16
14 11 13
co
class y + m x
17
15 16
wceq
wff x + m y = y + m x
18
17 9 10
wral
wff ∀ y ∈ s x + m y = y + m x
19
18 8 6
crab
class x ∈ Base m | ∀ y ∈ s x + m y = y + m x
20
3 7 19
cmpt
class s ∈ 𝒫 Base m ⟼ x ∈ Base m | ∀ y ∈ s x + m y = y + m x
21
1 2 20
cmpt
class m ∈ V ⟼ s ∈ 𝒫 Base m ⟼ x ∈ Base m | ∀ y ∈ s x + m y = y + m x
22
0 21
wceq
wff Cntz = m ∈ V ⟼ s ∈ 𝒫 Base m ⟼ x ∈ Base m | ∀ y ∈ s x + m y = y + m x