This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define thecentralizer of a subset of a magma, which is the set of elements each of which commutes with each element of the given subset. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cntz | |- Cntz = ( m e. _V |-> ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccntz | |- Cntz |
|
| 1 | vm | |- m |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- m |
| 6 | 5 4 | cfv | |- ( Base ` m ) |
| 7 | 6 | cpw | |- ~P ( Base ` m ) |
| 8 | vx | |- x |
|
| 9 | vy | |- y |
|
| 10 | 3 | cv | |- s |
| 11 | 8 | cv | |- x |
| 12 | cplusg | |- +g |
|
| 13 | 5 12 | cfv | |- ( +g ` m ) |
| 14 | 9 | cv | |- y |
| 15 | 11 14 13 | co | |- ( x ( +g ` m ) y ) |
| 16 | 14 11 13 | co | |- ( y ( +g ` m ) x ) |
| 17 | 15 16 | wceq | |- ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) |
| 18 | 17 9 10 | wral | |- A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) |
| 19 | 18 8 6 | crab | |- { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } |
| 20 | 3 7 19 | cmpt | |- ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) |
| 21 | 1 2 20 | cmpt | |- ( m e. _V |-> ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) ) |
| 22 | 0 21 | wceq | |- Cntz = ( m e. _V |-> ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) ) |