This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cncf | ⊢ –cn→ = ( 𝑎 ∈ 𝒫 ℂ , 𝑏 ∈ 𝒫 ℂ ↦ { 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccncf | ⊢ –cn→ | |
| 1 | va | ⊢ 𝑎 | |
| 2 | cc | ⊢ ℂ | |
| 3 | 2 | cpw | ⊢ 𝒫 ℂ |
| 4 | vb | ⊢ 𝑏 | |
| 5 | vf | ⊢ 𝑓 | |
| 6 | 4 | cv | ⊢ 𝑏 |
| 7 | cmap | ⊢ ↑m | |
| 8 | 1 | cv | ⊢ 𝑎 |
| 9 | 6 8 7 | co | ⊢ ( 𝑏 ↑m 𝑎 ) |
| 10 | vx | ⊢ 𝑥 | |
| 11 | ve | ⊢ 𝑒 | |
| 12 | crp | ⊢ ℝ+ | |
| 13 | vd | ⊢ 𝑑 | |
| 14 | vy | ⊢ 𝑦 | |
| 15 | cabs | ⊢ abs | |
| 16 | 10 | cv | ⊢ 𝑥 |
| 17 | cmin | ⊢ − | |
| 18 | 14 | cv | ⊢ 𝑦 |
| 19 | 16 18 17 | co | ⊢ ( 𝑥 − 𝑦 ) |
| 20 | 19 15 | cfv | ⊢ ( abs ‘ ( 𝑥 − 𝑦 ) ) |
| 21 | clt | ⊢ < | |
| 22 | 13 | cv | ⊢ 𝑑 |
| 23 | 20 22 21 | wbr | ⊢ ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 |
| 24 | 5 | cv | ⊢ 𝑓 |
| 25 | 16 24 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 26 | 18 24 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 27 | 25 26 17 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) |
| 28 | 27 15 | cfv | ⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) |
| 29 | 11 | cv | ⊢ 𝑒 |
| 30 | 28 29 21 | wbr | ⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 |
| 31 | 23 30 | wi | ⊢ ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) |
| 32 | 31 14 8 | wral | ⊢ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) |
| 33 | 32 13 12 | wrex | ⊢ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) |
| 34 | 33 11 12 | wral | ⊢ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) |
| 35 | 34 10 8 | wral | ⊢ ∀ 𝑥 ∈ 𝑎 ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) |
| 36 | 35 5 9 | crab | ⊢ { 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) } |
| 37 | 1 4 3 3 36 | cmpo | ⊢ ( 𝑎 ∈ 𝒫 ℂ , 𝑏 ∈ 𝒫 ℂ ↦ { 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) } ) |
| 38 | 0 37 | wceq | ⊢ –cn→ = ( 𝑎 ∈ 𝒫 ℂ , 𝑏 ∈ 𝒫 ℂ ↦ { 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) } ) |