This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Real and imaginary parts; conjugate
df-cj
Metamath Proof Explorer
Definition df-cj
Description: Define the complex conjugate function. See cjcli for its closure and
cjval for its value. (Contributed by NM , 9-May-1999) (Revised by Mario Carneiro , 6-Nov-2013)
Ref
Expression
Assertion
df-cj
⊢ * = x ∈ ℂ ⟼ ι y ∈ ℂ | x + y ∈ ℝ ∧ i ⁢ x − y ∈ ℝ
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ccj
class *
1
vx
setvar x
2
cc
class ℂ
3
vy
setvar y
4
1
cv
setvar x
5
caddc
class +
6
3
cv
setvar y
7
4 6 5
co
class x + y
8
cr
class ℝ
9
7 8
wcel
wff x + y ∈ ℝ
10
ci
class i
11
cmul
class ×
12
cmin
class −
13
4 6 12
co
class x − y
14
10 13 11
co
class i ⁢ x − y
15
14 8
wcel
wff i ⁢ x − y ∈ ℝ
16
9 15
wa
wff x + y ∈ ℝ ∧ i ⁢ x − y ∈ ℝ
17
16 3 2
crio
class ι y ∈ ℂ | x + y ∈ ℝ ∧ i ⁢ x − y ∈ ℝ
18
1 2 17
cmpt
class x ∈ ℂ ⟼ ι y ∈ ℂ | x + y ∈ ℝ ∧ i ⁢ x − y ∈ ℝ
19
0 18
wceq
wff * = x ∈ ℂ ⟼ ι y ∈ ℂ | x + y ∈ ℝ ∧ i ⁢ x − y ∈ ℝ