This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Linear, continuous, bounded, Hermitian, unitary operators and norms
df-bdop
Metamath Proof Explorer
Description: Define the set of bounded linear Hilbert space operators. (See
df-hosum for definition of operator.) (Contributed by NM , 18-Jan-2006) (New usage is discouraged.)
Ref
Expression
Assertion
df-bdop
⊢ BndLinOp = t ∈ LinOp | norm op ⁡ t < +∞
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cbo
class BndLinOp
1
vt
setvar t
2
clo
class LinOp
3
cnop
class norm op
4
1
cv
setvar t
5
4 3
cfv
class norm op ⁡ t
6
clt
class <
7
cpnf
class +∞
8
5 7 6
wbr
wff norm op ⁡ t < +∞
9
8 1 2
crab
class t ∈ LinOp | norm op ⁡ t < +∞
10
0 9
wceq
wff BndLinOp = t ∈ LinOp | norm op ⁡ t < +∞