This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by SN, 2-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-assa | ⊢ AssAlg = { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | casa | ⊢ AssAlg | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | clmod | ⊢ LMod | |
| 3 | crg | ⊢ Ring | |
| 4 | 2 3 | cin | ⊢ ( LMod ∩ Ring ) |
| 5 | csca | ⊢ Scalar | |
| 6 | 1 | cv | ⊢ 𝑤 |
| 7 | 6 5 | cfv | ⊢ ( Scalar ‘ 𝑤 ) |
| 8 | vf | ⊢ 𝑓 | |
| 9 | vr | ⊢ 𝑟 | |
| 10 | cbs | ⊢ Base | |
| 11 | 8 | cv | ⊢ 𝑓 |
| 12 | 11 10 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 13 | vx | ⊢ 𝑥 | |
| 14 | 6 10 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 15 | vy | ⊢ 𝑦 | |
| 16 | cvsca | ⊢ ·𝑠 | |
| 17 | 6 16 | cfv | ⊢ ( ·𝑠 ‘ 𝑤 ) |
| 18 | vs | ⊢ 𝑠 | |
| 19 | cmulr | ⊢ .r | |
| 20 | 6 19 | cfv | ⊢ ( .r ‘ 𝑤 ) |
| 21 | vt | ⊢ 𝑡 | |
| 22 | 9 | cv | ⊢ 𝑟 |
| 23 | 18 | cv | ⊢ 𝑠 |
| 24 | 13 | cv | ⊢ 𝑥 |
| 25 | 22 24 23 | co | ⊢ ( 𝑟 𝑠 𝑥 ) |
| 26 | 21 | cv | ⊢ 𝑡 |
| 27 | 15 | cv | ⊢ 𝑦 |
| 28 | 25 27 26 | co | ⊢ ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) |
| 29 | 24 27 26 | co | ⊢ ( 𝑥 𝑡 𝑦 ) |
| 30 | 22 29 23 | co | ⊢ ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) |
| 31 | 28 30 | wceq | ⊢ ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) |
| 32 | 22 27 23 | co | ⊢ ( 𝑟 𝑠 𝑦 ) |
| 33 | 24 32 26 | co | ⊢ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) |
| 34 | 33 30 | wceq | ⊢ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) |
| 35 | 31 34 | wa | ⊢ ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
| 36 | 35 21 20 | wsbc | ⊢ [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
| 37 | 36 18 17 | wsbc | ⊢ [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
| 38 | 37 15 14 | wral | ⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
| 39 | 38 13 14 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
| 40 | 39 9 12 | wral | ⊢ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
| 41 | 40 8 7 | wsbc | ⊢ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
| 42 | 41 1 4 | crab | ⊢ { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) } |
| 43 | 0 42 | wceq | ⊢ AssAlg = { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) } |