This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by SN, 2-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-assa | |- AssAlg = { w e. ( LMod i^i Ring ) | [. ( Scalar ` w ) / f ]. A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | casa | |- AssAlg |
|
| 1 | vw | |- w |
|
| 2 | clmod | |- LMod |
|
| 3 | crg | |- Ring |
|
| 4 | 2 3 | cin | |- ( LMod i^i Ring ) |
| 5 | csca | |- Scalar |
|
| 6 | 1 | cv | |- w |
| 7 | 6 5 | cfv | |- ( Scalar ` w ) |
| 8 | vf | |- f |
|
| 9 | vr | |- r |
|
| 10 | cbs | |- Base |
|
| 11 | 8 | cv | |- f |
| 12 | 11 10 | cfv | |- ( Base ` f ) |
| 13 | vx | |- x |
|
| 14 | 6 10 | cfv | |- ( Base ` w ) |
| 15 | vy | |- y |
|
| 16 | cvsca | |- .s |
|
| 17 | 6 16 | cfv | |- ( .s ` w ) |
| 18 | vs | |- s |
|
| 19 | cmulr | |- .r |
|
| 20 | 6 19 | cfv | |- ( .r ` w ) |
| 21 | vt | |- t |
|
| 22 | 9 | cv | |- r |
| 23 | 18 | cv | |- s |
| 24 | 13 | cv | |- x |
| 25 | 22 24 23 | co | |- ( r s x ) |
| 26 | 21 | cv | |- t |
| 27 | 15 | cv | |- y |
| 28 | 25 27 26 | co | |- ( ( r s x ) t y ) |
| 29 | 24 27 26 | co | |- ( x t y ) |
| 30 | 22 29 23 | co | |- ( r s ( x t y ) ) |
| 31 | 28 30 | wceq | |- ( ( r s x ) t y ) = ( r s ( x t y ) ) |
| 32 | 22 27 23 | co | |- ( r s y ) |
| 33 | 24 32 26 | co | |- ( x t ( r s y ) ) |
| 34 | 33 30 | wceq | |- ( x t ( r s y ) ) = ( r s ( x t y ) ) |
| 35 | 31 34 | wa | |- ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
| 36 | 35 21 20 | wsbc | |- [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
| 37 | 36 18 17 | wsbc | |- [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
| 38 | 37 15 14 | wral | |- A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
| 39 | 38 13 14 | wral | |- A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
| 40 | 39 9 12 | wral | |- A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
| 41 | 40 8 7 | wsbc | |- [. ( Scalar ` w ) / f ]. A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
| 42 | 41 1 4 | crab | |- { w e. ( LMod i^i Ring ) | [. ( Scalar ` w ) / f ]. A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) } |
| 43 | 0 42 | wceq | |- AssAlg = { w e. ( LMod i^i Ring ) | [. ( Scalar ` w ) / f ]. A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) } |