This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every unital algebra contains a canonical homomorphic image of its ring of scalars as scalar multiples of the unity element. This names the homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ascl | ⊢ algSc = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cascl | ⊢ algSc | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | csca | ⊢ Scalar | |
| 6 | 1 | cv | ⊢ 𝑤 |
| 7 | 6 5 | cfv | ⊢ ( Scalar ‘ 𝑤 ) |
| 8 | 7 4 | cfv | ⊢ ( Base ‘ ( Scalar ‘ 𝑤 ) ) |
| 9 | 3 | cv | ⊢ 𝑥 |
| 10 | cvsca | ⊢ ·𝑠 | |
| 11 | 6 10 | cfv | ⊢ ( ·𝑠 ‘ 𝑤 ) |
| 12 | cur | ⊢ 1r | |
| 13 | 6 12 | cfv | ⊢ ( 1r ‘ 𝑤 ) |
| 14 | 9 13 11 | co | ⊢ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) |
| 15 | 3 8 14 | cmpt | ⊢ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) |
| 16 | 1 2 15 | cmpt | ⊢ ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) ) |
| 17 | 0 16 | wceq | ⊢ algSc = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) ) |