This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of absolute values on a ring. An absolute value is a generalization of the usual absolute value function df-abs to arbitrary rings. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-abv | |- AbsVal = ( r e. Ring |-> { f e. ( ( 0 [,) +oo ) ^m ( Base ` r ) ) | A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cabv | |- AbsVal |
|
| 1 | vr | |- r |
|
| 2 | crg | |- Ring |
|
| 3 | vf | |- f |
|
| 4 | cc0 | |- 0 |
|
| 5 | cico | |- [,) |
|
| 6 | cpnf | |- +oo |
|
| 7 | 4 6 5 | co | |- ( 0 [,) +oo ) |
| 8 | cmap | |- ^m |
|
| 9 | cbs | |- Base |
|
| 10 | 1 | cv | |- r |
| 11 | 10 9 | cfv | |- ( Base ` r ) |
| 12 | 7 11 8 | co | |- ( ( 0 [,) +oo ) ^m ( Base ` r ) ) |
| 13 | vx | |- x |
|
| 14 | 3 | cv | |- f |
| 15 | 13 | cv | |- x |
| 16 | 15 14 | cfv | |- ( f ` x ) |
| 17 | 16 4 | wceq | |- ( f ` x ) = 0 |
| 18 | c0g | |- 0g |
|
| 19 | 10 18 | cfv | |- ( 0g ` r ) |
| 20 | 15 19 | wceq | |- x = ( 0g ` r ) |
| 21 | 17 20 | wb | |- ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) |
| 22 | vy | |- y |
|
| 23 | cmulr | |- .r |
|
| 24 | 10 23 | cfv | |- ( .r ` r ) |
| 25 | 22 | cv | |- y |
| 26 | 15 25 24 | co | |- ( x ( .r ` r ) y ) |
| 27 | 26 14 | cfv | |- ( f ` ( x ( .r ` r ) y ) ) |
| 28 | cmul | |- x. |
|
| 29 | 25 14 | cfv | |- ( f ` y ) |
| 30 | 16 29 28 | co | |- ( ( f ` x ) x. ( f ` y ) ) |
| 31 | 27 30 | wceq | |- ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) |
| 32 | cplusg | |- +g |
|
| 33 | 10 32 | cfv | |- ( +g ` r ) |
| 34 | 15 25 33 | co | |- ( x ( +g ` r ) y ) |
| 35 | 34 14 | cfv | |- ( f ` ( x ( +g ` r ) y ) ) |
| 36 | cle | |- <_ |
|
| 37 | caddc | |- + |
|
| 38 | 16 29 37 | co | |- ( ( f ` x ) + ( f ` y ) ) |
| 39 | 35 38 36 | wbr | |- ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) |
| 40 | 31 39 | wa | |- ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) |
| 41 | 40 22 11 | wral | |- A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) |
| 42 | 21 41 | wa | |- ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) |
| 43 | 42 13 11 | wral | |- A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) |
| 44 | 43 3 12 | crab | |- { f e. ( ( 0 [,) +oo ) ^m ( Base ` r ) ) | A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) } |
| 45 | 1 2 44 | cmpt | |- ( r e. Ring |-> { f e. ( ( 0 [,) +oo ) ^m ( Base ` r ) ) | A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) } ) |
| 46 | 0 45 | wceq | |- AbsVal = ( r e. Ring |-> { f e. ( ( 0 [,) +oo ) ^m ( Base ` r ) ) | A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) } ) |