This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015) (Revised by AV, 8-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decsplit0.1 | ⊢ 𝐴 ∈ ℕ0 | |
| decsplit.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| decsplit.3 | ⊢ 𝐷 ∈ ℕ0 | ||
| decsplit.4 | ⊢ 𝑀 ∈ ℕ0 | ||
| decsplit.5 | ⊢ ( 𝑀 + 1 ) = 𝑁 | ||
| decsplit.6 | ⊢ ( ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) + 𝐵 ) = 𝐶 | ||
| Assertion | decsplit | ⊢ ( ( 𝐴 · ( ; 1 0 ↑ 𝑁 ) ) + ; 𝐵 𝐷 ) = ; 𝐶 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decsplit0.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decsplit.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decsplit.3 | ⊢ 𝐷 ∈ ℕ0 | |
| 4 | decsplit.4 | ⊢ 𝑀 ∈ ℕ0 | |
| 5 | decsplit.5 | ⊢ ( 𝑀 + 1 ) = 𝑁 | |
| 6 | decsplit.6 | ⊢ ( ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) + 𝐵 ) = 𝐶 | |
| 7 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 8 | 7 4 | nn0expcli | ⊢ ( ; 1 0 ↑ 𝑀 ) ∈ ℕ0 |
| 9 | 1 8 | nn0mulcli | ⊢ ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ∈ ℕ0 |
| 10 | 7 9 | nn0mulcli | ⊢ ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) ∈ ℕ0 |
| 11 | 10 | nn0cni | ⊢ ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) ∈ ℂ |
| 12 | 7 2 | nn0mulcli | ⊢ ( ; 1 0 · 𝐵 ) ∈ ℕ0 |
| 13 | 12 | nn0cni | ⊢ ( ; 1 0 · 𝐵 ) ∈ ℂ |
| 14 | 3 | nn0cni | ⊢ 𝐷 ∈ ℂ |
| 15 | 11 13 14 | addassi | ⊢ ( ( ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) + ( ; 1 0 · 𝐵 ) ) + 𝐷 ) = ( ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) + ( ( ; 1 0 · 𝐵 ) + 𝐷 ) ) |
| 16 | 7 | nn0cni | ⊢ ; 1 0 ∈ ℂ |
| 17 | 9 | nn0cni | ⊢ ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ∈ ℂ |
| 18 | 2 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 19 | 16 17 18 | adddii | ⊢ ( ; 1 0 · ( ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) + 𝐵 ) ) = ( ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) + ( ; 1 0 · 𝐵 ) ) |
| 20 | 6 | oveq2i | ⊢ ( ; 1 0 · ( ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) + 𝐵 ) ) = ( ; 1 0 · 𝐶 ) |
| 21 | 19 20 | eqtr3i | ⊢ ( ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) + ( ; 1 0 · 𝐵 ) ) = ( ; 1 0 · 𝐶 ) |
| 22 | 21 | oveq1i | ⊢ ( ( ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) + ( ; 1 0 · 𝐵 ) ) + 𝐷 ) = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) |
| 23 | 15 22 | eqtr3i | ⊢ ( ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) + ( ( ; 1 0 · 𝐵 ) + 𝐷 ) ) = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) |
| 24 | 8 | nn0cni | ⊢ ( ; 1 0 ↑ 𝑀 ) ∈ ℂ |
| 25 | 24 16 | mulcomi | ⊢ ( ( ; 1 0 ↑ 𝑀 ) · ; 1 0 ) = ( ; 1 0 · ( ; 1 0 ↑ 𝑀 ) ) |
| 26 | 7 4 5 25 | numexpp1 | ⊢ ( ; 1 0 ↑ 𝑁 ) = ( ; 1 0 · ( ; 1 0 ↑ 𝑀 ) ) |
| 27 | 26 | oveq2i | ⊢ ( 𝐴 · ( ; 1 0 ↑ 𝑁 ) ) = ( 𝐴 · ( ; 1 0 · ( ; 1 0 ↑ 𝑀 ) ) ) |
| 28 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 29 | 28 16 24 | mul12i | ⊢ ( 𝐴 · ( ; 1 0 · ( ; 1 0 ↑ 𝑀 ) ) ) = ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) |
| 30 | 27 29 | eqtri | ⊢ ( 𝐴 · ( ; 1 0 ↑ 𝑁 ) ) = ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) |
| 31 | dfdec10 | ⊢ ; 𝐵 𝐷 = ( ( ; 1 0 · 𝐵 ) + 𝐷 ) | |
| 32 | 30 31 | oveq12i | ⊢ ( ( 𝐴 · ( ; 1 0 ↑ 𝑁 ) ) + ; 𝐵 𝐷 ) = ( ( ; 1 0 · ( 𝐴 · ( ; 1 0 ↑ 𝑀 ) ) ) + ( ( ; 1 0 · 𝐵 ) + 𝐷 ) ) |
| 33 | dfdec10 | ⊢ ; 𝐶 𝐷 = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) | |
| 34 | 23 32 33 | 3eqtr4i | ⊢ ( ( 𝐴 · ( ; 1 0 ↑ 𝑁 ) ) + ; 𝐵 𝐷 ) = ; 𝐶 𝐷 |