This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015) (Revised by AV, 8-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decsplit0.1 | |- A e. NN0 |
|
| decsplit.2 | |- B e. NN0 |
||
| decsplit.3 | |- D e. NN0 |
||
| decsplit.4 | |- M e. NN0 |
||
| decsplit.5 | |- ( M + 1 ) = N |
||
| decsplit.6 | |- ( ( A x. ( ; 1 0 ^ M ) ) + B ) = C |
||
| Assertion | decsplit | |- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ; C D |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decsplit0.1 | |- A e. NN0 |
|
| 2 | decsplit.2 | |- B e. NN0 |
|
| 3 | decsplit.3 | |- D e. NN0 |
|
| 4 | decsplit.4 | |- M e. NN0 |
|
| 5 | decsplit.5 | |- ( M + 1 ) = N |
|
| 6 | decsplit.6 | |- ( ( A x. ( ; 1 0 ^ M ) ) + B ) = C |
|
| 7 | 10nn0 | |- ; 1 0 e. NN0 |
|
| 8 | 7 4 | nn0expcli | |- ( ; 1 0 ^ M ) e. NN0 |
| 9 | 1 8 | nn0mulcli | |- ( A x. ( ; 1 0 ^ M ) ) e. NN0 |
| 10 | 7 9 | nn0mulcli | |- ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) e. NN0 |
| 11 | 10 | nn0cni | |- ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) e. CC |
| 12 | 7 2 | nn0mulcli | |- ( ; 1 0 x. B ) e. NN0 |
| 13 | 12 | nn0cni | |- ( ; 1 0 x. B ) e. CC |
| 14 | 3 | nn0cni | |- D e. CC |
| 15 | 11 13 14 | addassi | |- ( ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ; 1 0 x. B ) ) + D ) = ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ( ; 1 0 x. B ) + D ) ) |
| 16 | 7 | nn0cni | |- ; 1 0 e. CC |
| 17 | 9 | nn0cni | |- ( A x. ( ; 1 0 ^ M ) ) e. CC |
| 18 | 2 | nn0cni | |- B e. CC |
| 19 | 16 17 18 | adddii | |- ( ; 1 0 x. ( ( A x. ( ; 1 0 ^ M ) ) + B ) ) = ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ; 1 0 x. B ) ) |
| 20 | 6 | oveq2i | |- ( ; 1 0 x. ( ( A x. ( ; 1 0 ^ M ) ) + B ) ) = ( ; 1 0 x. C ) |
| 21 | 19 20 | eqtr3i | |- ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ; 1 0 x. B ) ) = ( ; 1 0 x. C ) |
| 22 | 21 | oveq1i | |- ( ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ; 1 0 x. B ) ) + D ) = ( ( ; 1 0 x. C ) + D ) |
| 23 | 15 22 | eqtr3i | |- ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ( ; 1 0 x. B ) + D ) ) = ( ( ; 1 0 x. C ) + D ) |
| 24 | 8 | nn0cni | |- ( ; 1 0 ^ M ) e. CC |
| 25 | 24 16 | mulcomi | |- ( ( ; 1 0 ^ M ) x. ; 1 0 ) = ( ; 1 0 x. ( ; 1 0 ^ M ) ) |
| 26 | 7 4 5 25 | numexpp1 | |- ( ; 1 0 ^ N ) = ( ; 1 0 x. ( ; 1 0 ^ M ) ) |
| 27 | 26 | oveq2i | |- ( A x. ( ; 1 0 ^ N ) ) = ( A x. ( ; 1 0 x. ( ; 1 0 ^ M ) ) ) |
| 28 | 1 | nn0cni | |- A e. CC |
| 29 | 28 16 24 | mul12i | |- ( A x. ( ; 1 0 x. ( ; 1 0 ^ M ) ) ) = ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) |
| 30 | 27 29 | eqtri | |- ( A x. ( ; 1 0 ^ N ) ) = ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) |
| 31 | dfdec10 | |- ; B D = ( ( ; 1 0 x. B ) + D ) |
|
| 32 | 30 31 | oveq12i | |- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ( ; 1 0 x. B ) + D ) ) |
| 33 | dfdec10 | |- ; C D = ( ( ; 1 0 x. C ) + D ) |
|
| 34 | 23 32 33 | 3eqtr4i | |- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ; C D |