This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recxpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| cxpltd.2 | ⊢ ( 𝜑 → 1 < 𝐴 ) | ||
| cxpltd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| cxpltd.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| Assertion | cxpltd | ⊢ ( 𝜑 → ( 𝐵 < 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recxpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | cxpltd.2 | ⊢ ( 𝜑 → 1 < 𝐴 ) | |
| 3 | cxpltd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | cxpltd.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 5 | cxplt | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 < 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | ⊢ ( 𝜑 → ( 𝐵 < 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) |