This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recxpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| cxplead.2 | ⊢ ( 𝜑 → 1 ≤ 𝐴 ) | ||
| cxplead.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| cxplead.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| cxplead.5 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) | ||
| Assertion | cxplead | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recxpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | cxplead.2 | ⊢ ( 𝜑 → 1 ≤ 𝐴 ) | |
| 3 | cxplead.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | cxplead.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 5 | cxplead.5 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) | |
| 6 | cxplea | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) | |
| 7 | 1 2 3 4 5 6 | syl221anc | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) |