This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recxpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| recxpcld.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| divcxpd.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| divcxpd.5 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | divcxpd | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) / ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recxpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | recxpcld.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 3 | divcxpd.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 4 | divcxpd.5 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 5 | divcxp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) / ( 𝐵 ↑𝑐 𝐶 ) ) ) | |
| 6 | 1 2 3 4 5 | syl211anc | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) / ( 𝐵 ↑𝑐 𝐶 ) ) ) |