This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpcom | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) ↑𝑐 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 2 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 3 | mulcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( 𝐴 ↑𝑐 ( 𝐶 · 𝐵 ) ) ) |
| 7 | cxpmul | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) ) | |
| 8 | 2 7 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) ) |
| 9 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ+ ) | |
| 10 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 11 | 1 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 12 | 9 10 11 | cxpmuld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑𝑐 ( 𝐶 · 𝐵 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) ↑𝑐 𝐵 ) ) |
| 13 | 6 8 12 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) ↑𝑐 𝐵 ) ) |