This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Hilbert lattices
cvr1
Metamath Proof Explorer
Description: A Hilbert lattice has the covering property. Proposition 1(ii) in
Kalmbach p. 140 (and its converse). ( chcv1 analog.) (Contributed by NM , 17-Nov-2011)
Ref
Expression
Hypotheses
cvr1.b
⊢ B = Base K
cvr1.l
⊢ ≤ ˙ = ≤ K
cvr1.j
⊢ ∨ ˙ = join ⁡ K
cvr1.c
⊢ C = ⋖ K
cvr1.a
⊢ A = Atoms ⁡ K
Assertion
cvr1
⊢ K ∈ HL ∧ X ∈ B ∧ P ∈ A → ¬ P ≤ ˙ X ↔ X C X ∨ ˙ P
Proof
Step
Hyp
Ref
Expression
1
cvr1.b
⊢ B = Base K
2
cvr1.l
⊢ ≤ ˙ = ≤ K
3
cvr1.j
⊢ ∨ ˙ = join ⁡ K
4
cvr1.c
⊢ C = ⋖ K
5
cvr1.a
⊢ A = Atoms ⁡ K
6
hlomcmcv
⊢ K ∈ HL → K ∈ OML ∧ K ∈ CLat ∧ K ∈ CvLat
7
1 2 3 4 5
cvlcvr1
⊢ K ∈ OML ∧ K ∈ CLat ∧ K ∈ CvLat ∧ X ∈ B ∧ P ∈ A → ¬ P ≤ ˙ X ↔ X C X ∨ ˙ P
8
6 7
syl3an1
⊢ K ∈ HL ∧ X ∈ B ∧ P ∈ A → ¬ P ≤ ˙ X ↔ X C X ∨ ˙ P