This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013) (Revised by NM, 2-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbriota | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | ⊢ ( 𝑧 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 2 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | 2 | riotabidv | ⊢ ( 𝑧 = 𝐴 → ( ℩ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝑧 = 𝐴 → ( ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 5 | vex | ⊢ 𝑧 ∈ V | |
| 6 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 8 | 6 7 | nfriota | ⊢ Ⅎ 𝑥 ( ℩ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 9 | sbequ12 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 10 | 9 | riotabidv | ⊢ ( 𝑥 = 𝑧 → ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 11 | 5 8 10 | csbief | ⊢ ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 12 | 4 11 | vtoclg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 13 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ∅ ) | |
| 14 | df-riota | ⊢ ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 15 | euex | ⊢ ( ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 16 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 ∈ V ) |
| 18 | 17 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 ∈ V ) |
| 19 | 15 18 | syl | ⊢ ( ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 ∈ V ) |
| 20 | iotanul | ⊢ ( ¬ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) = ∅ ) | |
| 21 | 19 20 | nsyl5 | ⊢ ( ¬ 𝐴 ∈ V → ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) = ∅ ) |
| 22 | 14 21 | eqtr2id | ⊢ ( ¬ 𝐴 ∈ V → ∅ = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 23 | 13 22 | eqtrd | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 24 | 12 23 | pm2.61i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |