This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012) (Revised by NM, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbres | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ↾ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( 𝐵 ↾ 𝐶 ) = ( 𝐵 ∩ ( 𝐶 × V ) ) | |
| 2 | 1 | csbeq2i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ↾ 𝐶 ) = ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∩ ( 𝐶 × V ) ) |
| 3 | csbxp | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 × V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 × ⦋ 𝐴 / 𝑥 ⦌ V ) | |
| 4 | csbconstg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ V = V ) | |
| 5 | 4 | xpeq2d | ⊢ ( 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 × ⦋ 𝐴 / 𝑥 ⦌ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 × V ) ) |
| 6 | 3 5 | eqtrid | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 × V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 × V ) ) |
| 7 | 0xp | ⊢ ( ∅ × V ) = ∅ | |
| 8 | 7 | a1i | ⊢ ( ¬ 𝐴 ∈ V → ( ∅ × V ) = ∅ ) |
| 9 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) | |
| 10 | 9 | xpeq1d | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 × V ) = ( ∅ × V ) ) |
| 11 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 × V ) = ∅ ) | |
| 12 | 8 10 11 | 3eqtr4rd | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 × V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 × V ) ) |
| 13 | 6 12 | pm2.61i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 × V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 × V ) |
| 14 | 13 | ineq2i | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 × V ) ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 × V ) ) |
| 15 | csbin | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∩ ( 𝐶 × V ) ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 × V ) ) | |
| 16 | df-res | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 × V ) ) | |
| 17 | 14 15 16 | 3eqtr4i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∩ ( 𝐶 × V ) ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 18 | 2 17 | eqtri | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ↾ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |