This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012) (Revised by NM, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbres | |- [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B |` [_ A / x ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( B |` C ) = ( B i^i ( C X. _V ) ) |
|
| 2 | 1 | csbeq2i | |- [_ A / x ]_ ( B |` C ) = [_ A / x ]_ ( B i^i ( C X. _V ) ) |
| 3 | csbxp | |- [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. [_ A / x ]_ _V ) |
|
| 4 | csbconstg | |- ( A e. _V -> [_ A / x ]_ _V = _V ) |
|
| 5 | 4 | xpeq2d | |- ( A e. _V -> ( [_ A / x ]_ C X. [_ A / x ]_ _V ) = ( [_ A / x ]_ C X. _V ) ) |
| 6 | 3 5 | eqtrid | |- ( A e. _V -> [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. _V ) ) |
| 7 | 0xp | |- ( (/) X. _V ) = (/) |
|
| 8 | 7 | a1i | |- ( -. A e. _V -> ( (/) X. _V ) = (/) ) |
| 9 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ C = (/) ) |
|
| 10 | 9 | xpeq1d | |- ( -. A e. _V -> ( [_ A / x ]_ C X. _V ) = ( (/) X. _V ) ) |
| 11 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ ( C X. _V ) = (/) ) |
|
| 12 | 8 10 11 | 3eqtr4rd | |- ( -. A e. _V -> [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. _V ) ) |
| 13 | 6 12 | pm2.61i | |- [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. _V ) |
| 14 | 13 | ineq2i | |- ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) |
| 15 | csbin | |- [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) |
|
| 16 | df-res | |- ( [_ A / x ]_ B |` [_ A / x ]_ C ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) |
|
| 17 | 14 15 16 | 3eqtr4i | |- [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B |` [_ A / x ]_ C ) |
| 18 | 2 17 | eqtri | |- [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B |` [_ A / x ]_ C ) |