This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbprg | |- ( C e. V -> [_ C / x ]_ { A , B } = { [_ C / x ]_ A , [_ C / x ]_ B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbun | |- [_ C / x ]_ ( { A } u. { B } ) = ( [_ C / x ]_ { A } u. [_ C / x ]_ { B } ) |
|
| 2 | csbsng | |- ( C e. V -> [_ C / x ]_ { A } = { [_ C / x ]_ A } ) |
|
| 3 | csbsng | |- ( C e. V -> [_ C / x ]_ { B } = { [_ C / x ]_ B } ) |
|
| 4 | 2 3 | uneq12d | |- ( C e. V -> ( [_ C / x ]_ { A } u. [_ C / x ]_ { B } ) = ( { [_ C / x ]_ A } u. { [_ C / x ]_ B } ) ) |
| 5 | 1 4 | eqtrid | |- ( C e. V -> [_ C / x ]_ ( { A } u. { B } ) = ( { [_ C / x ]_ A } u. { [_ C / x ]_ B } ) ) |
| 6 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 7 | 6 | csbeq2i | |- [_ C / x ]_ { A , B } = [_ C / x ]_ ( { A } u. { B } ) |
| 8 | df-pr | |- { [_ C / x ]_ A , [_ C / x ]_ B } = ( { [_ C / x ]_ A } u. { [_ C / x ]_ B } ) |
|
| 9 | 5 7 8 | 3eqtr4g | |- ( C e. V -> [_ C / x ]_ { A , B } = { [_ C / x ]_ A , [_ C / x ]_ B } ) |