This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf .) (Contributed by NM, 11-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbiebt | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 2 | spsbc | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) ) |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → 𝐴 ∈ V ) | |
| 5 | biimt | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 = 𝐶 ↔ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) ) | |
| 6 | csbeq1a | ⊢ ( 𝑥 = 𝐴 → 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 = 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 8 | 5 7 | bitr3d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 10 | nfv | ⊢ Ⅎ 𝑥 𝐴 ∈ V | |
| 11 | nfnfc1 | ⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐶 | |
| 12 | 10 11 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) |
| 13 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐵 | |
| 14 | 13 | a1i | ⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 15 | simpr | ⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → Ⅎ 𝑥 𝐶 ) | |
| 16 | 14 15 | nfeqd | ⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 17 | 4 9 12 16 | sbciedf | ⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → ( [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 18 | 3 17 | sylibd | ⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 19 | 13 | a1i | ⊢ ( Ⅎ 𝑥 𝐶 → Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 20 | id | ⊢ ( Ⅎ 𝑥 𝐶 → Ⅎ 𝑥 𝐶 ) | |
| 21 | 19 20 | nfeqd | ⊢ ( Ⅎ 𝑥 𝐶 → Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 22 | 11 21 | nfan1 | ⊢ Ⅎ 𝑥 ( Ⅎ 𝑥 𝐶 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 23 | 7 | biimprcd | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 → ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) |
| 24 | 23 | adantl | ⊢ ( ( Ⅎ 𝑥 𝐶 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) → ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) |
| 25 | 22 24 | alrimi | ⊢ ( ( Ⅎ 𝑥 𝐶 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) |
| 26 | 25 | ex | ⊢ ( Ⅎ 𝑥 𝐶 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) ) |
| 28 | 18 27 | impbid | ⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 29 | 1 28 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |