This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move class substitution in and out of the converse of a relation. Version of csbcnv with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbcnvgALT | ⊢ ( 𝐴 ∈ 𝑉 → ◡ ⦋ 𝐴 / 𝑥 ⦌ 𝐹 = ⦋ 𝐴 / 𝑥 ⦌ ◡ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbr123 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑧 𝐹 𝑦 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ) | |
| 2 | csbconstg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑧 = 𝑧 ) | |
| 3 | csbconstg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑦 = 𝑦 ) | |
| 4 | 2 3 | breq12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ↔ 𝑧 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑦 ) ) |
| 5 | 1 4 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 𝐹 𝑦 ↔ 𝑧 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑦 ) ) |
| 6 | 5 | opabbidv | ⊢ ( 𝐴 ∈ 𝑉 → { 〈 𝑦 , 𝑧 〉 ∣ [ 𝐴 / 𝑥 ] 𝑧 𝐹 𝑦 } = { 〈 𝑦 , 𝑧 〉 ∣ 𝑧 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑦 } ) |
| 7 | csbopabgALT | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 〈 𝑦 , 𝑧 〉 ∣ 𝑧 𝐹 𝑦 } = { 〈 𝑦 , 𝑧 〉 ∣ [ 𝐴 / 𝑥 ] 𝑧 𝐹 𝑦 } ) | |
| 8 | df-cnv | ⊢ ◡ ⦋ 𝐴 / 𝑥 ⦌ 𝐹 = { 〈 𝑦 , 𝑧 〉 ∣ 𝑧 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑦 } | |
| 9 | 8 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ◡ ⦋ 𝐴 / 𝑥 ⦌ 𝐹 = { 〈 𝑦 , 𝑧 〉 ∣ 𝑧 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑦 } ) |
| 10 | 6 7 9 | 3eqtr4rd | ⊢ ( 𝐴 ∈ 𝑉 → ◡ ⦋ 𝐴 / 𝑥 ⦌ 𝐹 = ⦋ 𝐴 / 𝑥 ⦌ { 〈 𝑦 , 𝑧 〉 ∣ 𝑧 𝐹 𝑦 } ) |
| 11 | df-cnv | ⊢ ◡ 𝐹 = { 〈 𝑦 , 𝑧 〉 ∣ 𝑧 𝐹 𝑦 } | |
| 12 | 11 | csbeq2i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ◡ 𝐹 = ⦋ 𝐴 / 𝑥 ⦌ { 〈 𝑦 , 𝑧 〉 ∣ 𝑧 𝐹 𝑦 } |
| 13 | 10 12 | eqtr4di | ⊢ ( 𝐴 ∈ 𝑉 → ◡ ⦋ 𝐴 / 𝑥 ⦌ 𝐹 = ⦋ 𝐴 / 𝑥 ⦌ ◡ 𝐹 ) |