This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the cosine function. (Contributed by NM, 14-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cos | ⊢ cos = ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccos | ⊢ cos | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cc | ⊢ ℂ | |
| 3 | ce | ⊢ exp | |
| 4 | ci | ⊢ i | |
| 5 | cmul | ⊢ · | |
| 6 | 1 | cv | ⊢ 𝑥 |
| 7 | 4 6 5 | co | ⊢ ( i · 𝑥 ) |
| 8 | 7 3 | cfv | ⊢ ( exp ‘ ( i · 𝑥 ) ) |
| 9 | caddc | ⊢ + | |
| 10 | 4 | cneg | ⊢ - i |
| 11 | 10 6 5 | co | ⊢ ( - i · 𝑥 ) |
| 12 | 11 3 | cfv | ⊢ ( exp ‘ ( - i · 𝑥 ) ) |
| 13 | 8 12 9 | co | ⊢ ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) |
| 14 | cdiv | ⊢ / | |
| 15 | c2 | ⊢ 2 | |
| 16 | 13 15 14 | co | ⊢ ( ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) / 2 ) |
| 17 | 1 2 16 | cmpt | ⊢ ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) / 2 ) ) |
| 18 | 0 17 | wceq | ⊢ cos = ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) / 2 ) ) |