This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass theorem for the classes of cosets by A and B . (Contributed by Peter Mazsa, 11-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossss | ⊢ ( 𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑦 ) ) | |
| 2 | ssbr | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 𝐴 𝑧 → 𝑥 𝐵 𝑧 ) ) | |
| 3 | 1 2 | anim12d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 ∧ 𝑥 𝐵 𝑧 ) ) ) |
| 4 | 3 | eximdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → ∃ 𝑥 ( 𝑥 𝐵 𝑦 ∧ 𝑥 𝐵 𝑧 ) ) ) |
| 5 | 4 | ssopab2dv | ⊢ ( 𝐴 ⊆ 𝐵 → { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) } ⊆ { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑥 𝐵 𝑦 ∧ 𝑥 𝐵 𝑧 ) } ) |
| 6 | df-coss | ⊢ ≀ 𝐴 = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) } | |
| 7 | df-coss | ⊢ ≀ 𝐵 = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑥 𝐵 𝑦 ∧ 𝑥 𝐵 𝑧 ) } | |
| 8 | 5 6 7 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵 ) |