This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass theorem for the classes of cosets by A and B . (Contributed by Peter Mazsa, 11-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossss | |- ( A C_ B -> ,~ A C_ ,~ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr | |- ( A C_ B -> ( x A y -> x B y ) ) |
|
| 2 | ssbr | |- ( A C_ B -> ( x A z -> x B z ) ) |
|
| 3 | 1 2 | anim12d | |- ( A C_ B -> ( ( x A y /\ x A z ) -> ( x B y /\ x B z ) ) ) |
| 4 | 3 | eximdv | |- ( A C_ B -> ( E. x ( x A y /\ x A z ) -> E. x ( x B y /\ x B z ) ) ) |
| 5 | 4 | ssopab2dv | |- ( A C_ B -> { <. y , z >. | E. x ( x A y /\ x A z ) } C_ { <. y , z >. | E. x ( x B y /\ x B z ) } ) |
| 6 | df-coss | |- ,~ A = { <. y , z >. | E. x ( x A y /\ x A z ) } |
|
| 7 | df-coss | |- ,~ B = { <. y , z >. | E. x ( x B y /\ x B z ) } |
|
| 8 | 5 6 7 | 3sstr4g | |- ( A C_ B -> ,~ A C_ ,~ B ) |