This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the classes of cosets by A and B . (Contributed by Peter Mazsa, 9-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosseq | ⊢ ( 𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | ⊢ ( 𝐴 = 𝐵 → ( 𝑢 𝐴 𝑥 ↔ 𝑢 𝐵 𝑥 ) ) | |
| 2 | breq | ⊢ ( 𝐴 = 𝐵 → ( 𝑢 𝐴 𝑦 ↔ 𝑢 𝐵 𝑦 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑢 𝐴 𝑥 ∧ 𝑢 𝐴 𝑦 ) ↔ ( 𝑢 𝐵 𝑥 ∧ 𝑢 𝐵 𝑦 ) ) ) |
| 4 | 3 | exbidv | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑢 ( 𝑢 𝐴 𝑥 ∧ 𝑢 𝐴 𝑦 ) ↔ ∃ 𝑢 ( 𝑢 𝐵 𝑥 ∧ 𝑢 𝐵 𝑦 ) ) ) |
| 5 | 4 | opabbidv | ⊢ ( 𝐴 = 𝐵 → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝐴 𝑥 ∧ 𝑢 𝐴 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝐵 𝑥 ∧ 𝑢 𝐵 𝑦 ) } ) |
| 6 | df-coss | ⊢ ≀ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝐴 𝑥 ∧ 𝑢 𝐴 𝑦 ) } | |
| 7 | df-coss | ⊢ ≀ 𝐵 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝐵 𝑥 ∧ 𝑢 𝐵 𝑦 ) } | |
| 8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵 ) |