This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the classes of cosets by A and B . (Contributed by Peter Mazsa, 9-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosseq | |- ( A = B -> ,~ A = ,~ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | |- ( A = B -> ( u A x <-> u B x ) ) |
|
| 2 | breq | |- ( A = B -> ( u A y <-> u B y ) ) |
|
| 3 | 1 2 | anbi12d | |- ( A = B -> ( ( u A x /\ u A y ) <-> ( u B x /\ u B y ) ) ) |
| 4 | 3 | exbidv | |- ( A = B -> ( E. u ( u A x /\ u A y ) <-> E. u ( u B x /\ u B y ) ) ) |
| 5 | 4 | opabbidv | |- ( A = B -> { <. x , y >. | E. u ( u A x /\ u A y ) } = { <. x , y >. | E. u ( u B x /\ u B y ) } ) |
| 6 | df-coss | |- ,~ A = { <. x , y >. | E. u ( u A x /\ u A y ) } |
|
| 7 | df-coss | |- ,~ B = { <. x , y >. | E. u ( u B x /\ u B y ) } |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( A = B -> ,~ A = ,~ B ) |