This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for the class of cosets by the converse of R to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosscnvssid3 | ⊢ ( ≀ ◡ 𝑅 ⊆ I ↔ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossssid3 | ⊢ ( ≀ ◡ 𝑅 ⊆ I ↔ ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ◡ 𝑅 𝑢 ∧ 𝑥 ◡ 𝑅 𝑣 ) → 𝑢 = 𝑣 ) ) | |
| 2 | alrot3 | ⊢ ( ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ◡ 𝑅 𝑢 ∧ 𝑥 ◡ 𝑅 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑥 ◡ 𝑅 𝑢 ∧ 𝑥 ◡ 𝑅 𝑣 ) → 𝑢 = 𝑣 ) ) | |
| 3 | brcnvg | ⊢ ( ( 𝑥 ∈ V ∧ 𝑢 ∈ V ) → ( 𝑥 ◡ 𝑅 𝑢 ↔ 𝑢 𝑅 𝑥 ) ) | |
| 4 | 3 | el2v | ⊢ ( 𝑥 ◡ 𝑅 𝑢 ↔ 𝑢 𝑅 𝑥 ) |
| 5 | brcnvg | ⊢ ( ( 𝑥 ∈ V ∧ 𝑣 ∈ V ) → ( 𝑥 ◡ 𝑅 𝑣 ↔ 𝑣 𝑅 𝑥 ) ) | |
| 6 | 5 | el2v | ⊢ ( 𝑥 ◡ 𝑅 𝑣 ↔ 𝑣 𝑅 𝑥 ) |
| 7 | 4 6 | anbi12i | ⊢ ( ( 𝑥 ◡ 𝑅 𝑢 ∧ 𝑥 ◡ 𝑅 𝑣 ) ↔ ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) ) |
| 8 | 7 | imbi1i | ⊢ ( ( ( 𝑥 ◡ 𝑅 𝑢 ∧ 𝑥 ◡ 𝑅 𝑣 ) → 𝑢 = 𝑣 ) ↔ ( ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ) |
| 9 | 8 | 3albii | ⊢ ( ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑥 ◡ 𝑅 𝑢 ∧ 𝑥 ◡ 𝑅 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ) |
| 10 | 1 2 9 | 3bitri | ⊢ ( ≀ ◡ 𝑅 ⊆ I ↔ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ) |