This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class of cosets by the converse of R (Contributed by Peter Mazsa, 17-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosscnv | ⊢ ≀ ◡ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑥 𝑅 𝑢 ∧ 𝑦 𝑅 𝑢 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss | ⊢ ≀ ◡ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 ◡ 𝑅 𝑥 ∧ 𝑢 ◡ 𝑅 𝑦 ) } | |
| 2 | brcnvg | ⊢ ( ( 𝑢 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑢 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑢 ) ) | |
| 3 | 2 | el2v | ⊢ ( 𝑢 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑢 ) |
| 4 | brcnvg | ⊢ ( ( 𝑢 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑢 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑢 ) ) | |
| 5 | 4 | el2v | ⊢ ( 𝑢 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑢 ) |
| 6 | 3 5 | anbi12i | ⊢ ( ( 𝑢 ◡ 𝑅 𝑥 ∧ 𝑢 ◡ 𝑅 𝑦 ) ↔ ( 𝑥 𝑅 𝑢 ∧ 𝑦 𝑅 𝑢 ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑢 ( 𝑢 ◡ 𝑅 𝑥 ∧ 𝑢 ◡ 𝑅 𝑦 ) ↔ ∃ 𝑢 ( 𝑥 𝑅 𝑢 ∧ 𝑦 𝑅 𝑢 ) ) |
| 8 | 7 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 ◡ 𝑅 𝑥 ∧ 𝑢 ◡ 𝑅 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑥 𝑅 𝑢 ∧ 𝑦 𝑅 𝑢 ) } |
| 9 | 1 8 | eqtri | ⊢ ≀ ◡ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑥 𝑅 𝑢 ∧ 𝑦 𝑅 𝑢 ) } |