This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class of cosets by the converse of R (Contributed by Peter Mazsa, 17-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosscnv | |- ,~ `' R = { <. x , y >. | E. u ( x R u /\ y R u ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss | |- ,~ `' R = { <. x , y >. | E. u ( u `' R x /\ u `' R y ) } |
|
| 2 | brcnvg | |- ( ( u e. _V /\ x e. _V ) -> ( u `' R x <-> x R u ) ) |
|
| 3 | 2 | el2v | |- ( u `' R x <-> x R u ) |
| 4 | brcnvg | |- ( ( u e. _V /\ y e. _V ) -> ( u `' R y <-> y R u ) ) |
|
| 5 | 4 | el2v | |- ( u `' R y <-> y R u ) |
| 6 | 3 5 | anbi12i | |- ( ( u `' R x /\ u `' R y ) <-> ( x R u /\ y R u ) ) |
| 7 | 6 | exbii | |- ( E. u ( u `' R x /\ u `' R y ) <-> E. u ( x R u /\ y R u ) ) |
| 8 | 7 | opabbii | |- { <. x , y >. | E. u ( u `' R x /\ u `' R y ) } = { <. x , y >. | E. u ( x R u /\ y R u ) } |
| 9 | 1 8 | eqtri | |- ,~ `' R = { <. x , y >. | E. u ( x R u /\ y R u ) } |