This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | connhmph | ⊢ ( 𝐽 ≃ 𝐾 → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph | ⊢ ( 𝐽 ≃ 𝐾 ↔ ( 𝐽 Homeo 𝐾 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ) | |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3 4 | hmeof1o | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 ) |
| 6 | f1ofo | ⊢ ( 𝑓 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 → 𝑓 : ∪ 𝐽 –onto→ ∪ 𝐾 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 : ∪ 𝐽 –onto→ ∪ 𝐾 ) |
| 8 | hmeocn | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 9 | 4 | cnconn | ⊢ ( ( 𝐽 ∈ Conn ∧ 𝑓 : ∪ 𝐽 –onto→ ∪ 𝐾 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Conn ) |
| 10 | 9 | 3expb | ⊢ ( ( 𝐽 ∈ Conn ∧ ( 𝑓 : ∪ 𝐽 –onto→ ∪ 𝐾 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ) → 𝐾 ∈ Conn ) |
| 11 | 10 | expcom | ⊢ ( ( 𝑓 : ∪ 𝐽 –onto→ ∪ 𝐾 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |
| 12 | 7 8 11 | syl2anc | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |
| 13 | 12 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |
| 14 | 2 13 | sylbi | ⊢ ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |
| 15 | 1 14 | sylbi | ⊢ ( 𝐽 ≃ 𝐾 → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |