This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A single coefficient of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1sclmul.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| coe1sclmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1sclmul.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| coe1sclmul.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| coe1sclmul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | ||
| coe1sclmul.u | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | coe1sclmulfv | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 ) ∙ 𝑌 ) ) ‘ 0 ) = ( 𝑋 · ( ( coe1 ‘ 𝑌 ) ‘ 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sclmul.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | coe1sclmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | coe1sclmul.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | coe1sclmul.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 5 | coe1sclmul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | |
| 6 | coe1sclmul.u | ⊢ · = ( .r ‘ 𝑅 ) | |
| 7 | 1 2 3 4 5 6 | coe1sclmul | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 ) ∙ 𝑌 ) ) = ( ( ℕ0 × { 𝑋 } ) ∘f · ( coe1 ‘ 𝑌 ) ) ) |
| 8 | 7 | 3expb | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ) → ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 ) ∙ 𝑌 ) ) = ( ( ℕ0 × { 𝑋 } ) ∘f · ( coe1 ‘ 𝑌 ) ) ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) → ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 ) ∙ 𝑌 ) ) = ( ( ℕ0 × { 𝑋 } ) ∘f · ( coe1 ‘ 𝑌 ) ) ) |
| 10 | 9 | fveq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 ) ∙ 𝑌 ) ) ‘ 0 ) = ( ( ( ℕ0 × { 𝑋 } ) ∘f · ( coe1 ‘ 𝑌 ) ) ‘ 0 ) ) |
| 11 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) → 0 ∈ ℕ0 ) | |
| 12 | nn0ex | ⊢ ℕ0 ∈ V | |
| 13 | 12 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) → ℕ0 ∈ V ) |
| 14 | simp2l | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) → 𝑋 ∈ 𝐾 ) | |
| 15 | simp2r | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) → 𝑌 ∈ 𝐵 ) | |
| 16 | eqid | ⊢ ( coe1 ‘ 𝑌 ) = ( coe1 ‘ 𝑌 ) | |
| 17 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 18 | 16 2 1 17 | coe1f | ⊢ ( 𝑌 ∈ 𝐵 → ( coe1 ‘ 𝑌 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 19 | ffn | ⊢ ( ( coe1 ‘ 𝑌 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) → ( coe1 ‘ 𝑌 ) Fn ℕ0 ) | |
| 20 | 15 18 19 | 3syl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) → ( coe1 ‘ 𝑌 ) Fn ℕ0 ) |
| 21 | eqidd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑌 ) ‘ 0 ) = ( ( coe1 ‘ 𝑌 ) ‘ 0 ) ) | |
| 22 | 13 14 20 21 | ofc1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) ∧ 0 ∈ ℕ0 ) → ( ( ( ℕ0 × { 𝑋 } ) ∘f · ( coe1 ‘ 𝑌 ) ) ‘ 0 ) = ( 𝑋 · ( ( coe1 ‘ 𝑌 ) ‘ 0 ) ) ) |
| 23 | 11 22 | mpdan | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) → ( ( ( ℕ0 × { 𝑋 } ) ∘f · ( coe1 ‘ 𝑌 ) ) ‘ 0 ) = ( 𝑋 · ( ( coe1 ‘ 𝑌 ) ‘ 0 ) ) ) |
| 24 | 10 23 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 ) ∙ 𝑌 ) ) ‘ 0 ) = ( 𝑋 · ( ( coe1 ‘ 𝑌 ) ‘ 0 ) ) ) |