This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A single coefficient of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1sclmul.p | |- P = ( Poly1 ` R ) |
|
| coe1sclmul.b | |- B = ( Base ` P ) |
||
| coe1sclmul.k | |- K = ( Base ` R ) |
||
| coe1sclmul.a | |- A = ( algSc ` P ) |
||
| coe1sclmul.t | |- .xb = ( .r ` P ) |
||
| coe1sclmul.u | |- .x. = ( .r ` R ) |
||
| Assertion | coe1sclmulfv | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( ( coe1 ` ( ( A ` X ) .xb Y ) ) ` .0. ) = ( X .x. ( ( coe1 ` Y ) ` .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sclmul.p | |- P = ( Poly1 ` R ) |
|
| 2 | coe1sclmul.b | |- B = ( Base ` P ) |
|
| 3 | coe1sclmul.k | |- K = ( Base ` R ) |
|
| 4 | coe1sclmul.a | |- A = ( algSc ` P ) |
|
| 5 | coe1sclmul.t | |- .xb = ( .r ` P ) |
|
| 6 | coe1sclmul.u | |- .x. = ( .r ` R ) |
|
| 7 | 1 2 3 4 5 6 | coe1sclmul | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( coe1 ` ( ( A ` X ) .xb Y ) ) = ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ) |
| 8 | 7 | 3expb | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) ) -> ( coe1 ` ( ( A ` X ) .xb Y ) ) = ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ) |
| 9 | 8 | 3adant3 | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( coe1 ` ( ( A ` X ) .xb Y ) ) = ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ) |
| 10 | 9 | fveq1d | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( ( coe1 ` ( ( A ` X ) .xb Y ) ) ` .0. ) = ( ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ` .0. ) ) |
| 11 | simp3 | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> .0. e. NN0 ) |
|
| 12 | nn0ex | |- NN0 e. _V |
|
| 13 | 12 | a1i | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> NN0 e. _V ) |
| 14 | simp2l | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> X e. K ) |
|
| 15 | simp2r | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> Y e. B ) |
|
| 16 | eqid | |- ( coe1 ` Y ) = ( coe1 ` Y ) |
|
| 17 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 18 | 16 2 1 17 | coe1f | |- ( Y e. B -> ( coe1 ` Y ) : NN0 --> ( Base ` R ) ) |
| 19 | ffn | |- ( ( coe1 ` Y ) : NN0 --> ( Base ` R ) -> ( coe1 ` Y ) Fn NN0 ) |
|
| 20 | 15 18 19 | 3syl | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( coe1 ` Y ) Fn NN0 ) |
| 21 | eqidd | |- ( ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) /\ .0. e. NN0 ) -> ( ( coe1 ` Y ) ` .0. ) = ( ( coe1 ` Y ) ` .0. ) ) |
|
| 22 | 13 14 20 21 | ofc1 | |- ( ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) /\ .0. e. NN0 ) -> ( ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ` .0. ) = ( X .x. ( ( coe1 ` Y ) ` .0. ) ) ) |
| 23 | 11 22 | mpdan | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ` .0. ) = ( X .x. ( ( coe1 ` Y ) ` .0. ) ) ) |
| 24 | 10 23 | eqtrd | |- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( ( coe1 ` ( ( A ` X ) .xb Y ) ) ` .0. ) = ( X .x. ( ( coe1 ` Y ) ` .0. ) ) ) |