This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of the unit polynomial. (Contributed by AV, 9-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1id.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| coe1id.i | ⊢ 𝐼 = ( 1r ‘ 𝑃 ) | ||
| coe1id.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| coe1id.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | coe1id | ⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 𝐼 ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 1 , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1id.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | coe1id.i | ⊢ 𝐼 = ( 1r ‘ 𝑃 ) | |
| 3 | coe1id.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | coe1id.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) | |
| 6 | 1 5 4 2 | ply1scl1 | ⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ 1 ) = 𝐼 ) |
| 7 | 6 | eqcomd | ⊢ ( 𝑅 ∈ Ring → 𝐼 = ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 𝐼 ) = ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 10 | 9 4 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 11 | 1 5 9 3 | coe1scl | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 1 , 0 ) ) ) |
| 12 | 10 11 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 1 , 0 ) ) ) |
| 13 | 8 12 | eqtrd | ⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 𝐼 ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 1 , 0 ) ) ) |