This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that cosets by cosets by R is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cocossss | ⊢ ( ≀ ≀ 𝑅 ⊆ 𝑆 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcoss | ⊢ Rel ≀ ≀ 𝑅 | |
| 2 | ssrel3 | ⊢ ( Rel ≀ ≀ 𝑅 → ( ≀ ≀ 𝑅 ⊆ 𝑆 ↔ ∀ 𝑥 ∀ 𝑧 ( 𝑥 ≀ ≀ 𝑅 𝑧 → 𝑥 𝑆 𝑧 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ≀ ≀ 𝑅 ⊆ 𝑆 ↔ ∀ 𝑥 ∀ 𝑧 ( 𝑥 ≀ ≀ 𝑅 𝑧 → 𝑥 𝑆 𝑧 ) ) |
| 4 | brcoss | ⊢ ( ( 𝑥 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑥 ≀ ≀ 𝑅 𝑧 ↔ ∃ 𝑦 ( 𝑦 ≀ 𝑅 𝑥 ∧ 𝑦 ≀ 𝑅 𝑧 ) ) ) | |
| 5 | 4 | el2v | ⊢ ( 𝑥 ≀ ≀ 𝑅 𝑧 ↔ ∃ 𝑦 ( 𝑦 ≀ 𝑅 𝑥 ∧ 𝑦 ≀ 𝑅 𝑧 ) ) |
| 6 | brcosscnvcoss | ⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ≀ 𝑅 𝑥 ↔ 𝑥 ≀ 𝑅 𝑦 ) ) | |
| 7 | 6 | el2v | ⊢ ( 𝑦 ≀ 𝑅 𝑥 ↔ 𝑥 ≀ 𝑅 𝑦 ) |
| 8 | 7 | anbi1i | ⊢ ( ( 𝑦 ≀ 𝑅 𝑥 ∧ 𝑦 ≀ 𝑅 𝑧 ) ↔ ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ≀ 𝑅 𝑥 ∧ 𝑦 ≀ 𝑅 𝑧 ) ↔ ∃ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) ) |
| 10 | 5 9 | bitri | ⊢ ( 𝑥 ≀ ≀ 𝑅 𝑧 ↔ ∃ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) ) |
| 11 | 10 | imbi1i | ⊢ ( ( 𝑥 ≀ ≀ 𝑅 𝑧 → 𝑥 𝑆 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ) |
| 12 | 19.23v | ⊢ ( ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ) | |
| 13 | 11 12 | bitr4i | ⊢ ( ( 𝑥 ≀ ≀ 𝑅 𝑧 → 𝑥 𝑆 𝑧 ) ↔ ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ) |
| 14 | 13 | albii | ⊢ ( ∀ 𝑧 ( 𝑥 ≀ ≀ 𝑅 𝑧 → 𝑥 𝑆 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ) |
| 15 | alcom | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ∀ 𝑧 ( 𝑥 ≀ ≀ 𝑅 𝑧 → 𝑥 𝑆 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ) |
| 17 | 16 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 ≀ ≀ 𝑅 𝑧 → 𝑥 𝑆 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ) |
| 18 | 3 17 | bitri | ⊢ ( ≀ ≀ 𝑅 ⊆ 𝑆 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 𝑆 𝑧 ) ) |