This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers exists. This theorem shows that ax-cnex is redundant if we assume ax-rep . See also ax-cnex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnexALT | ⊢ ℂ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reexALT | ⊢ ℝ ∈ V | |
| 2 | 1 1 | xpex | ⊢ ( ℝ × ℝ ) ∈ V |
| 3 | eqid | ⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 4 | 3 | cnref1o | ⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) : ( ℝ × ℝ ) –1-1-onto→ ℂ |
| 5 | f1ofo | ⊢ ( ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) : ( ℝ × ℝ ) –1-1-onto→ ℂ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) : ( ℝ × ℝ ) –onto→ ℂ ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) : ( ℝ × ℝ ) –onto→ ℂ |
| 7 | focdmex | ⊢ ( ( ℝ × ℝ ) ∈ V → ( ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) : ( ℝ × ℝ ) –onto→ ℂ → ℂ ∈ V ) ) | |
| 8 | 2 6 7 | mp2 | ⊢ ℂ ∈ V |