This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers exists. This theorem shows that ax-cnex is redundant if we assume ax-rep . See also ax-cnex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnexALT | |- CC e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reexALT | |- RR e. _V |
|
| 2 | 1 1 | xpex | |- ( RR X. RR ) e. _V |
| 3 | eqid | |- ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
|
| 4 | 3 | cnref1o | |- ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) : ( RR X. RR ) -1-1-onto-> CC |
| 5 | f1ofo | |- ( ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) : ( RR X. RR ) -1-1-onto-> CC -> ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) : ( RR X. RR ) -onto-> CC ) |
|
| 6 | 4 5 | ax-mp | |- ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) : ( RR X. RR ) -onto-> CC |
| 7 | focdmex | |- ( ( RR X. RR ) e. _V -> ( ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) : ( RR X. RR ) -onto-> CC -> CC e. _V ) ) |
|
| 8 | 2 6 7 | mp2 | |- CC e. _V |