This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function is continuous at all points. Theorem 7.2(g) of Munkres p. 107. (Contributed by Raph Levien, 20-Nov-2006) (Proof shortened by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncnp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| cncnp.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | cncnp2 | ⊢ ( 𝑋 ≠ ∅ → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncnp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cncnp.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 4 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 | 3 4 | sylib | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 7 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 8 | 6 7 | sylib | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 9 | 1 2 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 10 | 5 8 9 | jca31 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 12 | r19.2z | ⊢ ( ( 𝑋 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) → ∃ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) | |
| 13 | cnptop1 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) → 𝐽 ∈ Top ) | |
| 14 | 13 4 | sylib | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 15 | cnptop2 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) → 𝐾 ∈ Top ) | |
| 16 | 15 7 | sylib | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 17 | 1 2 | cnpf | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 18 | 14 16 17 | jca31 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) → ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 19 | 18 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) → ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 20 | 12 19 | syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) → ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 21 | cncnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) ) | |
| 22 | 21 | baibd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) |
| 23 | 11 20 22 | pm5.21nd | ⊢ ( 𝑋 ≠ ∅ → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) |