This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric spaces
Topological definitions using the reals
cncfcn1
Metamath Proof Explorer
Description: Relate complex function continuity to topological continuity.
(Contributed by Paul Chapman , 28-Nov-2007) (Revised by Mario Carneiro , 7-Sep-2015)
Ref
Expression
Hypothesis
cncfcn1.1
⊢ J = TopOpen ⁡ ℂ fld
Assertion
cncfcn1
⊢ ℂ ⟶ cn ℂ = J Cn J
Proof
Step
Hyp
Ref
Expression
1
cncfcn1.1
⊢ J = TopOpen ⁡ ℂ fld
2
ssid
⊢ ℂ ⊆ ℂ
3
1
cnfldtopon
⊢ J ∈ TopOn ⁡ ℂ
4
3
toponrestid
⊢ J = J ↾ 𝑡 ℂ
5
1 4 4
cncfcn
⊢ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ → ℂ ⟶ cn ℂ = J Cn J
6
2 2 5
mp2an
⊢ ℂ ⟶ cn ℂ = J Cn J