This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation with orthocomplement. Theorem 2.3(i) of Beran p. 39. (Contributed by NM, 4-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | |- A e. CH |
|
| pjoml2.2 | |- B e. CH |
||
| Assertion | cmcm2i | |- ( A C_H B <-> A C_H ( _|_ ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | |- A e. CH |
|
| 2 | pjoml2.2 | |- B e. CH |
|
| 3 | 1 2 | chincli | |- ( A i^i B ) e. CH |
| 4 | 2 | choccli | |- ( _|_ ` B ) e. CH |
| 5 | 1 4 | chincli | |- ( A i^i ( _|_ ` B ) ) e. CH |
| 6 | 3 5 | chjcomi | |- ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) = ( ( A i^i ( _|_ ` B ) ) vH ( A i^i B ) ) |
| 7 | 2 | pjococi | |- ( _|_ ` ( _|_ ` B ) ) = B |
| 8 | 7 | ineq2i | |- ( A i^i ( _|_ ` ( _|_ ` B ) ) ) = ( A i^i B ) |
| 9 | 8 | oveq2i | |- ( ( A i^i ( _|_ ` B ) ) vH ( A i^i ( _|_ ` ( _|_ ` B ) ) ) ) = ( ( A i^i ( _|_ ` B ) ) vH ( A i^i B ) ) |
| 10 | 6 9 | eqtr4i | |- ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) = ( ( A i^i ( _|_ ` B ) ) vH ( A i^i ( _|_ ` ( _|_ ` B ) ) ) ) |
| 11 | 10 | eqeq2i | |- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) <-> A = ( ( A i^i ( _|_ ` B ) ) vH ( A i^i ( _|_ ` ( _|_ ` B ) ) ) ) ) |
| 12 | 1 2 | cmbri | |- ( A C_H B <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
| 13 | 1 4 | cmbri | |- ( A C_H ( _|_ ` B ) <-> A = ( ( A i^i ( _|_ ` B ) ) vH ( A i^i ( _|_ ` ( _|_ ` B ) ) ) ) ) |
| 14 | 11 12 13 | 3bitr4i | |- ( A C_H B <-> A C_H ( _|_ ` B ) ) |