This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class X is not a vertex of a graph G , then it has an empty closed neighborhood in G . (Contributed by AV, 8-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clnbgrel.v | |- V = ( Vtx ` G ) |
|
| Assertion | clnbgrnvtx0 | |- ( X e/ V -> ( G ClNeighbVtx X ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrel.v | |- V = ( Vtx ` G ) |
|
| 2 | csbfv | |- [_ G / g ]_ ( Vtx ` g ) = ( Vtx ` G ) |
|
| 3 | 1 2 | eqtr4i | |- V = [_ G / g ]_ ( Vtx ` g ) |
| 4 | neleq2 | |- ( V = [_ G / g ]_ ( Vtx ` g ) -> ( X e/ V <-> X e/ [_ G / g ]_ ( Vtx ` g ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( X e/ V <-> X e/ [_ G / g ]_ ( Vtx ` g ) ) |
| 6 | 5 | biimpi | |- ( X e/ V -> X e/ [_ G / g ]_ ( Vtx ` g ) ) |
| 7 | 6 | olcd | |- ( X e/ V -> ( G e/ _V \/ X e/ [_ G / g ]_ ( Vtx ` g ) ) ) |
| 8 | df-clnbgr | |- ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) |
|
| 9 | 8 | mpoxneldm | |- ( ( G e/ _V \/ X e/ [_ G / g ]_ ( Vtx ` g ) ) -> ( G ClNeighbVtx X ) = (/) ) |
| 10 | 7 9 | syl | |- ( X e/ V -> ( G ClNeighbVtx X ) = (/) ) |