This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcn1lem.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climcn1lem.2 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climcn1lem.4 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| climcn1lem.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climcn1lem.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| climcn1lem.7 | ⊢ 𝐻 : ℂ ⟶ ℂ | ||
| climcn1lem.8 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐻 ‘ 𝑧 ) − ( 𝐻 ‘ 𝐴 ) ) ) < 𝑥 ) ) | ||
| climcn1lem.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | climcn1lem | ⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐻 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcn1lem.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climcn1lem.2 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 3 | climcn1lem.4 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 4 | climcn1lem.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | climcn1lem.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 6 | climcn1lem.7 | ⊢ 𝐻 : ℂ ⟶ ℂ | |
| 7 | climcn1lem.8 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐻 ‘ 𝑧 ) − ( 𝐻 ‘ 𝐴 ) ) ) < 𝑥 ) ) | |
| 8 | climcn1lem.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 9 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 11 | 6 | ffvelcdmi | ⊢ ( 𝑧 ∈ ℂ → ( 𝐻 ‘ 𝑧 ) ∈ ℂ ) |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐻 ‘ 𝑧 ) ∈ ℂ ) |
| 13 | 10 7 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐻 ‘ 𝑧 ) − ( 𝐻 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 14 | 1 4 10 12 2 3 13 5 8 | climcn1 | ⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐻 ‘ 𝐴 ) ) |