This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq . See also cleqf . (Contributed by NM, 26-May-1993) (Proof shortened by Wolf Lammen, 14-Nov-2019) Remove dependency on ax-13 . (Revised by BJ, 30-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cleqh.1 | ⊢ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 𝑦 ∈ 𝐴 ) | |
| cleqh.2 | ⊢ ( 𝑦 ∈ 𝐵 → ∀ 𝑥 𝑦 ∈ 𝐵 ) | ||
| Assertion | cleqh | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleqh.1 | ⊢ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 𝑦 ∈ 𝐴 ) | |
| 2 | cleqh.2 | ⊢ ( 𝑦 ∈ 𝐵 → ∀ 𝑥 𝑦 ∈ 𝐵 ) | |
| 3 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) | |
| 5 | 1 | nf5i | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 6 | 2 | nf5i | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
| 7 | 5 6 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) |
| 8 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 9 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 10 | 8 9 | bibi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) ) |
| 11 | 4 7 10 | cbvalv1 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 12 | 3 11 | bitr4i | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |