This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 ). (Contributed by Jim Kingdon, 22-Nov-2018) Reduce dependencies on axioms. (Revised by Wolf Lammen, 24-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clelsb2 | ⊢ ( [ 𝑦 / 𝑥 ] 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2w | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑧 ) ) | |
| 2 | eleq2w | ⊢ ( 𝑧 = 𝑦 → ( 𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 3 | 1 2 | sbievw2 | ⊢ ( [ 𝑦 / 𝑥 ] 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) |