This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clatglb.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| clatglb.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| clatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| Assertion | clatglbss | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝐺 ‘ 𝑇 ) ≤ ( 𝐺 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatglb.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | clatglb.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | clatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ CLat ) | |
| 5 | simpl2 | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑇 ⊆ 𝐵 ) | |
| 6 | simp3 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝑇 ) | |
| 7 | 6 | sselda | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑇 ) |
| 8 | 1 2 3 | clatglble | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑇 ) ≤ 𝑦 ) |
| 9 | 4 5 7 8 | syl3anc | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑇 ) ≤ 𝑦 ) |
| 10 | 9 | ralrimiva | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ∀ 𝑦 ∈ 𝑆 ( 𝐺 ‘ 𝑇 ) ≤ 𝑦 ) |
| 11 | simp1 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝐾 ∈ CLat ) | |
| 12 | 1 3 | clatglbcl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑇 ) ∈ 𝐵 ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝐺 ‘ 𝑇 ) ∈ 𝐵 ) |
| 14 | sstr | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝐵 ) → 𝑆 ⊆ 𝐵 ) | |
| 15 | 14 | ancoms | ⊢ ( ( 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝐵 ) |
| 16 | 15 | 3adant1 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝐵 ) |
| 17 | 1 2 3 | clatleglb | ⊢ ( ( 𝐾 ∈ CLat ∧ ( 𝐺 ‘ 𝑇 ) ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝐺 ‘ 𝑇 ) ≤ ( 𝐺 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝐺 ‘ 𝑇 ) ≤ 𝑦 ) ) |
| 18 | 11 13 16 17 | syl3anc | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( ( 𝐺 ‘ 𝑇 ) ≤ ( 𝐺 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝐺 ‘ 𝑇 ) ≤ 𝑦 ) ) |
| 19 | 10 18 | mpbird | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝐺 ‘ 𝑇 ) ≤ ( 𝐺 ‘ 𝑆 ) ) |