This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clatglb.b | |- B = ( Base ` K ) |
|
| clatglb.l | |- .<_ = ( le ` K ) |
||
| clatglb.g | |- G = ( glb ` K ) |
||
| Assertion | clatglbss | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( G ` T ) .<_ ( G ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatglb.b | |- B = ( Base ` K ) |
|
| 2 | clatglb.l | |- .<_ = ( le ` K ) |
|
| 3 | clatglb.g | |- G = ( glb ` K ) |
|
| 4 | simpl1 | |- ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> K e. CLat ) |
|
| 5 | simpl2 | |- ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> T C_ B ) |
|
| 6 | simp3 | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> S C_ T ) |
|
| 7 | 6 | sselda | |- ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> y e. T ) |
| 8 | 1 2 3 | clatglble | |- ( ( K e. CLat /\ T C_ B /\ y e. T ) -> ( G ` T ) .<_ y ) |
| 9 | 4 5 7 8 | syl3anc | |- ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> ( G ` T ) .<_ y ) |
| 10 | 9 | ralrimiva | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> A. y e. S ( G ` T ) .<_ y ) |
| 11 | simp1 | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> K e. CLat ) |
|
| 12 | 1 3 | clatglbcl | |- ( ( K e. CLat /\ T C_ B ) -> ( G ` T ) e. B ) |
| 13 | 12 | 3adant3 | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( G ` T ) e. B ) |
| 14 | sstr | |- ( ( S C_ T /\ T C_ B ) -> S C_ B ) |
|
| 15 | 14 | ancoms | |- ( ( T C_ B /\ S C_ T ) -> S C_ B ) |
| 16 | 15 | 3adant1 | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> S C_ B ) |
| 17 | 1 2 3 | clatleglb | |- ( ( K e. CLat /\ ( G ` T ) e. B /\ S C_ B ) -> ( ( G ` T ) .<_ ( G ` S ) <-> A. y e. S ( G ` T ) .<_ y ) ) |
| 18 | 11 13 16 17 | syl3anc | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( ( G ` T ) .<_ ( G ` S ) <-> A. y e. S ( G ` T ) .<_ y ) ) |
| 19 | 10 18 | mpbird | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( G ` T ) .<_ ( G ` S ) ) |