This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is nonzero iff its complex conjugate is nonzero. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| cjne0d.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| Assertion | cjne0d | ⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | cjne0d.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 3 | cjne0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) ) |
| 5 | 2 4 | mpbid | ⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) ≠ 0 ) |