This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsscon3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ) ) | |
| 2 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) | |
| 3 | 2 | sseq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ) |
| 4 | 1 3 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ) ) |
| 5 | sseq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 6 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ⊥ ‘ 𝐵 ) = ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 7 | 6 | sseq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ↔ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ) |
| 8 | 5 7 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ↔ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ) ) |
| 9 | ifchhv | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ | |
| 10 | ifchhv | ⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∈ Cℋ | |
| 11 | 9 10 | chsscon3i | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ↔ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ⊆ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) |
| 12 | 4 8 11 | dedth2h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |